Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films.
نویسندگان
چکیده
Glucose and lactate enzyme electrodes have been fabricated through the deposition of an anionic self-assembled monolayer and subsequent redox polymer/enzyme electrostatic complexation on gold substrates. These surfaces were functionalized with a negative charge using 11-mercaptoundecanoic acid (MUA), followed by alternating immersions in cationic redox polymer solutions and anionic glucose oxidase (GOX) or lactate oxidase (LAX) solutions to build the nanocomposite structure. The presence of the multilayer structure was verified by ellipsometry and sensor function characterized electrochemically. Reproducible analyte response curves from 2 to 20 mM (GOX) and 2-10 mM (LAX) were generated with the standard deviation between multiple sensors between 12 and 17%, a direct result of the reproducibility of the fabrication technique. In the case of glucose enzyme electrodes, the multilayer structure was further stabilized through the introduction of covalent bonds within and between the layers. Chemical cross-linking was accomplished by exposing the thin film to glutaraldehyde vapors, inducing linkage formation between lysine and arginine residues present on the enzyme periphery with amine groups present on a novel redox polymer, poly[vinylpyridine Os(bisbipyridine)2Cl]-co-allylamine. Finally, an initial demonstration of thin-film patterning was performed as a precursor to the development of redundant sensor arrays. Microcontact printing was used to functionalize portions of a gold surface with a blocking agent, typically 1-hexadecanethiol. This was followed by immersion in MUA to functionalize the remaining portions of gold with negative charges. The multilayer deposition process was then followed, resulting in growth only on the regions containing MUA, resulting in a "positive"-type pattern. This technique may be used for fabrication of thin-film redundant sensor arrays, with thickness under 100 angstrom and lateral dimensions on a micrometer scale.
منابع مشابه
Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases
Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyri...
متن کاملCharacterization of oxidoreductase–redox polymer electrostatic film assembly on gold by surface plasmon resonance spectroscopy and Fourier transform infrared–external reflection spectroscopy
The electrostatic assembly of nanocomposite thin films consisting of alternating layers of an organometallic redox polymer (RP) and oxidoreductase enzymes, glucose oxidase (GOX), lactate oxidase (LOX) and pyruvate oxidase (PYX), was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, fol...
متن کاملAmperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.
Based on their size and unique electrical properties, carbon nanotubes offer the exciting possibility of developing ultrasensitive, electrochemical biosensors. In this study, we describe the construction of amperometric biosensors based on the incorporation of single-walled carbon nanotubes modified with enzyme into redox polymer hydrogels. The composite films were constructed by first incubati...
متن کاملA biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer.
A glucose biosensor based on a nanocomposite made by layer-by-layer electrodeposition of the redox polymer into a multilayer containing glucose oxidase (GOx) and single-walled carbon nanotubes (SWCNT) on a screen-printed carbon electrode (SPCE) surface was developed. The objectives of the electrodeposition of redox polymer are to stabilize further the multilayer using a coordinative cross-linke...
متن کاملThe Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films
The performance of a modified electrode of nanocomposite films consisting of polypyrrole-chitosan-titanium dioxide (Ppy-CS-TiO₂) has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO₂ nanoparticles (NPs) and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO₂ NPs in the nanocomposite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 72 13 شماره
صفحات -
تاریخ انتشار 2000